Archivo de la etiqueta: estabilidad

Cálculo de la tensión de anclaje en macizos rocosos

Uno de los métodos mas sencillos y fiables es el propuesto por Kovari y Fritz en 1976 para roturas planares.

Los datos de partida se obtienen del estudio geotécnico y de la observación geométrica del macizo rocoso.

Una vez establecidos los datos geométricos de la superficie de deslizamiento, se puede calcular matemáticamente el volumen de la masa de roca que puede entrar en movimiento.

Los datos esenciales para el cálculo son:
– longitud del plano de deslizamiento
– ángulo superficie terreno respecto a la horizontal
– ángulo superficie de deslizamiento respecto a la horizontal

Las propiedades geotecnicas del macizo rocoso a conocer son:
– cohesión en la superficie de deslizamiento
– ángulo de rozamiento interno de la superficie de deslizamiento
– densidad (peso específico)

El método de cálculo permite establecer un esfuerzo de anclaje para un determinado coeficiente de seguridad.

Asimismo, y en base a la experiencia del técnico competente, ese esfuerzo de anclaje se puede repartir en varias filas a lo alto de la superficie del muro, reduciéndose así la tensión por anclaje.

Como recomendación final, en muros de cierta altura (>10m) y con macizos rocosos homogéneos se suele elegir una fila de anclajes cada 2,5 m de altura.

Ejemplo:

Coeficiente de seguridad a considerar: 1,5
Peso del macizo rocoso que puede deslizar (T/m) 76,4
Longitud del plano de deslizamiento (m) 12,12
Cohesión en la superficie de deslizamiento (T/m²) 5
Angulo de anclaje con el plano horizontal (º) 15
Angulo del plano de deslizamiento con el plano horizontal (º) 60
Angulo de rozamiento de la superficie de deslizamiento (º) 22

Esfuerzo de anclaje total calculado (T/m):29,81

Muro tipo recomendado:
Altura del muro.: 10,5 m
Separación en la vertical.: 2,5 m
Nº de filas anclajes (cada 2,5 m de altura).: 4
Tensión por anclaje.:18,63 T

Muro tipo calculado según criterio técnico:
Número de filas.:3
Separación entre anclajes.: 3 m
Tensión por anclaje.: 29,81 T

Datos de la masa de roca a deslizar:
Angulo superficie de deslizamiento con la horizontal.: 60º
Angulo superficie terreno – horizontal.: 0º
Volumen.: 31,82 m³
Densidad.: 2,40 T/m³

tension de anclajes

Empujes sobre un muro. Empuje activo

Uno de los apartados del estudio geotécnico, es el referido a los empujes en caso de haber sótanos, contención de tierras, …

En el siguiente ejemplo, se realiza un estudio geotécnico para la caracterización geotécnica de un terreno que se va a excavar y que para su contención se va a construir un muro en ménsula.

En este caso, contamos con un nivel freático y el trasdós del muro no es vertical, siendo el ancho de coronación del muro menor que la base. Los datos geométricos del muro no son de importancia ya que no se va a calcular ni dimensionar el muro.
empuje_programas

Los datos de partida son:
ángulo de rozamiento terreno  φ = 25º
ángulo de rozamiento muro – terreno  δ = 15º (según CTE)
ángulo terreno coronación  β = 15º
peso específico suelo seco  γ = 23 kN/m³
peso específico suelo sumergido γ’= 13 kN/m³
peso específico agua γw = 10 kN/m³
ángulo trasdos – horizontal = 86,6º (por geometría)
altura del muro (desde la base de cimentación) H = 3,0 m
altura del nivel de agua desde coronación muro h = 1,6 m

Para calcular el coeficiente de empuje activo, se utilizan las fórmulas clásicas que se pueden consultar en cualquier bibliografía. En nuestro caso, estamos en el peor de los casos posibles a efectos de cálculo, trasdós no vertical, presencia de agua, …
empuje_activo

Obteniendo:
coeficiente de empuje activo   Ea = 0,504
coeficiente de empuje activo horizontal  Eah = 0,478
coeficiente de empuje activo vertical    Eav= 0,159

Para calcular el empuje activo, y dado que tenemos nivel freático, se descompone este empuje en los siguientes:
– empuje debido al nivel de tierras por encima de la capa freática
– empuje debido a la carga equivalente del nivel superior sobre el nivel sumergido
– empuje debido al nivel de tierras sumergido
– empuje debido al nivel del agua en la zona sumergida

a) Empuje debido al nivel de tierras por encima de la capa freática
empuje_activo2
Siendo z la altura del nivel del terreno situado por encima del nivel de agua y y el peso específico del terreno seco.
El valor obtenido para el empuje = 14,84 kN/m
En cuanto a la presión del terreno:
empuje_activo_presion
Siendo P = 18,55 kN/m²
Y el punto de aplicación de este empuje se puede calcular mediante y=2z/3 = 1,07m

b) Empuje debido a la carga equivalente del nivel superior sobre el nivel sumergido
empujeactivomas
Siendo H la altura total de muro desde la base de cimentación.
El valor obtenido para el empuje = 25,97 kN/m
y la presion del terreno P = 18,55 kN/m²
En este caso, el punto de aplicación es y=z+(H-z)/2 = 2,30 m.

c) Empuje debido al nivel de tierras sumergido
otromasempuje
Utilizando en este caso el valor del peso específco del suelo sumergido. El valor de E = 6,42 kN/m.
La presión P = 9,17 kN/m²
El punto de aplicación se calcula mediante y= z + 2(H-z)/3 = 2,53 m

d) Empuje debido al nivel del agua en la zona sumergida
empujeagua
E = 9,8 kN/m
La presión P = 14,0 kN/m²
El punto de aplicación se calcula mediante y= z + 2(H-z)/3 = 2,53 m

Con estos valores, se puede calcular el valor de la componente horizontal y vertical del empuje activo sobre el muro.
empujesvertical-hortizonal

Obteniendo:
Empuje activo horizontal = 54,60 kN/m
Empuje activo vertical = 15,49 kN/m
Y el punto de aplicación de la resultante del empuje activo:
resultante
y = 2,05 m

distribucionempujes

Estabilidad de Taludes. Rotura por cuñas.

Se plantea la realización de un talud de 15 m de altura adoptando un ángulo de 45º. El macizo rocoso, está formado por una alternancia de calizas y margocalizas dispuestas en estratos centimétricos (15-50cm). Los parámetros geotécnicos, obtenidos a partir de una estación geomécanica realizada in situ han sido los siguientes: c = 40 kN/m², ángulo de rozamiento interno 20º.

El talud, tendrá una dirección N040ºE y un buzamiento al SE. Se han detectado y medido las siguientes familias de discontinuidad:

E = 165/34º; J1 = 355/60º; J2 = 063/82º

De la proyección estereográfica se deduce una posible rotura por cuñas a favor de E-J1 y otra a favor de E-J2.
proyeccion_estereografica_talud
Para calcular la estabilidad de la posible rotura, se sigue la metodología empleada por Hoek y Bray (1977) descrita en el Manual de Taludes (IGME).

En un primer lugar, se adopta el método rápido considerando que si el factor de seguridad para terreno seco y sin cohesión es mayor de 2,0, se puede afirmar que el talud será estable en las peores condiciones de presión intersticial.
tttttaludes
(A y B se obtienen de los ábacos para rotura por cuñas correspondientes). Obteniéndose:
E-J1        FS = 3,60
E-J2        FS = 0,61

La primera cuña, por tanto será estable, en el caso de la segunda se debe recurrir a una metodología mas precisa, en la que se tendrá en cuenta todos los factores que intervienen en la estabilidad del talud (altura, presencia de agua, parámetros geotécnicos, buzamientos, …). En este segundo caso, se debe volver a recurrir a las proyecciones estereográficas para el cálculo de los ángulos entre planos.
talud_fs_fs
talud3
Siendo:

X= 5,68; Y=2,45; A=1,47; B=5,47

obteniéndose un valor de FS = 2,487 y siendo por tanto estable.

En la actualidad existen muchos programas informáticos que simplifican estos cálculos, aunque sus resultados dependen de la experiencia y criterio del técnico que introduce los datos.

Existen aplicaciones sencillas, que calculan el FS a partir de los datos obtenidos en la proyección estereográfica:
taludes_cuñas
Y los que a partir de los datos geoestructurales medidos en campo y con los parámetros geotécnicos obtenidos en la estación geomecánica, calculan el FS.
talud4